What are the SI Units?

Length, Area, Volume, Mass, Density, Time, \& Temperature

40
60
-

30
20
10

The SI Units is short for the

 International System of Units. This measurement system is used worldwide especially in the fields of science and medicine.

Even though the SI Units were adopted worldwide in 1960, Americans still use other forms of measurements daily. For example, inches, feet, and miles are used for length as opposed to centimeter, meter, and kilometer. In the U.S., SI units are used primarily in commerce, trade, and in science related fields.

Why do you

 think it is important for all scientists to use the same measurement

system?

Scientists can communicate their data and findings clearly when they use the same system of measurement. That is why the SI Units are so important. It keeps scientists' measurements consistent amongst each other.

The SI Units is a standardized system of measurement founded on 7 base units.

Base Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electrical Current	Ampere	A
Temperature	kelvin	K
Amount of Particles in a Substance Luminosity	mole	mol

Let's start

Length

To measure length, or the distance between 2 points, you would use a meter stick. The base unit for length is the meter (m).

Length

- Meters: m

When to use measurement?

- Measuring from the floor to the doorknob
- Kilometers: km
- Measuring a large distance (city to city)
- Centimeters: cm
- Measuring small area (book)
- Millimeters: mm
- Measuring smaller area (pencil eraser)

If you were measuring the distance from

 one state capital to another, what unit of measurement would you use?

If you were measuring the distance from one state capital to another, what unit of measurement would you use?

What if you were to measure the length of a Q-tip? What measurement would

 you use?What if you were to measure the length of a Q-tip? What measurement would you use?

Can you convert these metrics?

If 1 km = 1,000 m, then...

$5 \mathrm{~km}=\ldots \mathrm{m}$

Can you convert these metrics?

If 1 km = 1,000 m, then...

$5 \mathrm{~km}=5,000 \mathrm{~m}$

Use length to find...

Area

Area is the measure of how much surface an object has. To find the area of a surface, use this formula:

Area= Length x Width
 $$
A=L \times W
$$

For
If a ballroom floor is 15 meters by 10 meters, what is the area of the room?

For
If a ballroom floor is 15 meters by 10 meters, what is the area of the room?

15 m

$150 \mathrm{~m}^{2}$

Moving

Volume

The amount of space matter occupies is volume. To find the volume of an object, use this formula:

Volume=

Length x Width x Height

$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

For

Example: You receive a birthday present. It is in a box. The box is $\mathbf{1 0} \mathbf{~ c m}$ tall, 10 cm long, and 10 cm wide. What is the box's volume?

For

Example:
It is in a box. The box is $\mathbf{1 0} \mathbf{~ c m}$ tall, 10 cm long, and 10 cm wide. What is the box's volume?

If a building is 200

 meters tall, 100 meters wide, and 50 meters long, then what is its volume?Can you solve?

If a building is 200 meters tall, 100 meters wide, and 50 meters long, then what is its volume?

Liquid Volume

To measure liquid volume, you would use the unit measurement known as the Liter (L). The tool you would use is a cylinder.

Liquid volume is also referred to as capacity.

Liquid Volume

- Measuring amounts like in a jug of milk or large soda bottle
- Measuring smaller amounts like in a baby bottle

- Liters (L)

- Milliliter (mL)

When to use

each
 measurement?

When measuring, you need to be

 aware of the meniscus. It is the curve in the water. You should measure at the bottom of the curve.

The liquid
volume would be 38 mL .

What about irregular objects?

Finding the volume of an irregular object like a rock can be tricky. You can't measure its sides, because they are not straight. So, what can you do?

To find the volume of an irregular object, fill a cylinder with water so that the object can be
submerged when dropped in.

The cylinder measures $\mathbf{2 0 0} \mathbf{~ m L}$ before the rock is added. After the rock has been dropped, the volume increases
to 300 mL . The difference, 100 mL , is the volume of the rock.

Mass is the amount of matter in an

 object. The base unit for mass is kilogram (kg). The tool you would use is a scale or balance.

Mass

- Grams: \mathbf{g}
- Measuring small items like a candy bar
- Kilograms: kg
- Measuring larger items like you

way done!

Density

Density is the amount of mass in volume.
Use this formula to find an object's density:

Density= Mass / Volume
 $D=M / V$

What would the

 density of a cup of water be is if its volume was 15 mL and its mass was$$
15 \mathrm{~g} \text { ? }
$$

What would the

 density of a cup of water be is if its volume was 15 mL and its mass was 15 g ?
Temperature

Temperature is the measurement of how hot or cold an object is. The base unit for temperature is Kelvin (K). Use a thermometer to find temperature.

Did you know? Temperature

When using a thermometer, the temperature is usually presented in Celsius or Fahrenheit. It is important to know how to convert Celsius to Kelvin.

Temperature

- To convert Celsius degrees to Kelvin, add 273.15 to the Celsius degrees.
- For example, if the temperature is 30 degrees Celsius, then add 273.15 to 30 and the answer is 303.15 K.

Time

Time is the ongoing sequence of events taking place. The base unit for time is seconds
(s). A clock, timer, or stopwatch are all tools that can be used to measure time.

Time

- Second (s)
- measure of time used to refer to greater measures of time
- Minute = 60 seconds
- Hour = 60 minutes
- Day = 24 hours
- Week= 7 days
- 12 Months= Year

As you learn more

 about the SI Units, you will find this metric conversion sheet helpful. It is a useful reference when converting measurements.Click on the image to download \& print.

Thanks to Clipart Library for the images!

For God hath not given us the spirit of fear; but of power, and of love, and of a sound mind. 2 Timothy 1:7

See our other

 Science resources at The Homeschool Daily!