
# What are the SI Units?

Length, Area, Volume, Mass, Density, Time, & Temperature

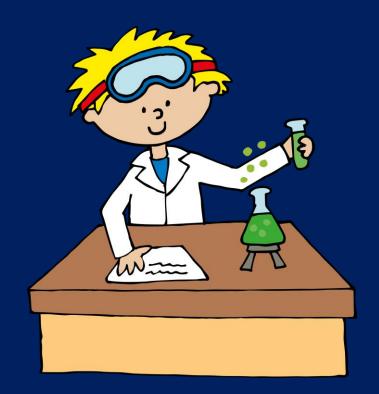


100

90

Created by Marie @ The Homeschool Daily

International System of Units. This measurement system is used worldwide especially in the fields of science and medicine.




Even though the SI Units were adopted worldwide in 1960, Americans still use other forms of measurements daily. For example, inches, feet, and miles are used for length as opposed to centimeter, meter, and kilometer. In the U.S., SI units are used primarily in commerce, trade, and in science related fields.

Why do you think it is important for all scientists to use the same measurement system?



Scientists can communicate their data and findings clearly when they use the same system of measurement. That is why the SI Units are so important. It keeps scientists' measurements consistent amongst each other.



# The SI Units is a standardized system of measurement founded on 7 base units.

| Base Quantity                      | Name     | Symbol |
|------------------------------------|----------|--------|
| Length                             | meter    | m      |
| Mass                               | kilogram | kg     |
| Time                               | second   | S      |
| Electrical Current                 | Ampere   | Α      |
| Temperature                        | kelvin   | K      |
| Amount of Particles in a Substance | mole     | mol    |
| Luminosity                         | candela  | cd     |



## Length

To measure length, or the distance between 2 points, you would use a meter stick. The base unit for length is the meter (m).

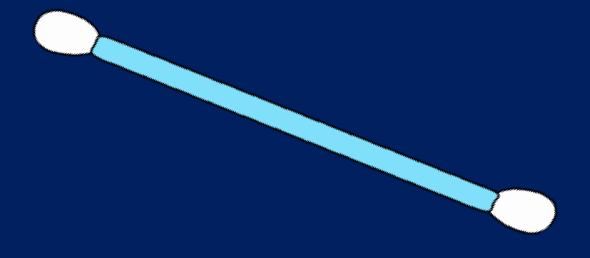


# Length

When to use each measurement?

- Meters: m
  - Measuring from the floor to the doorknob
- Kilometers: km
  - Measuring a large distance (city to city)
- Centimeters: cm
  - Measuring small area (book)
- Millimeters: mm
  - Measuring smaller area (pencil eraser)

# If you were measuring the distance from one state capital to another, what unit of measurement would you use?




If you were measuring the distance from one state capital to another, what unit of measurement would you use?



Kilometer

What if you were to measure the length of a Q-tip? What measurement would you use?



What if you were to measure the length of a Q-tip? What measurement would you use?



#### Can you convert these metrics?

If 1 km = 1,000 m, then...

#### Can you convert these metrics?

If 1 km = 1,000 m, then...

5 km = 5,000 m

Use length to find...

#### Area

Area is the measure of how much surface an object has. To find the area of a surface, use this formula:

Area = Length x Width

 $A = L \times W$ 

For Example:

# If a ballroom floor is 15 meters by 10 meters, what is the area of the room?



For Example:

If a ballroom floor is 15 meters by 10 meters, what is the area of the room?

*u<sub>01</sub>*15 m

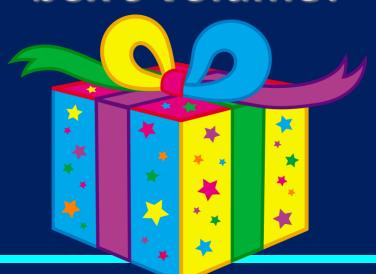
150 m<sup>2</sup>



### Volume

The amount of space matter occupies is volume. To find the volume of an object, use this formula:

Volume=


Length x Width x Height

V= L x W x H

It is in a box. The box is 10 cm tall, 10 cm long, and 10 cm wide. What is the box's volume?



It is in a box. The box is 10 cm tall, 10 cm long, and 10 cm wide. What is the box's volume?



1000 cm<sup>3</sup>



If a building is 200 meters tall, 100 meters wide, and 50 meters long, then what is its volume?



If a building is 200 meters tall, 100 meters wide, and 50 meters long, then what is its volume?

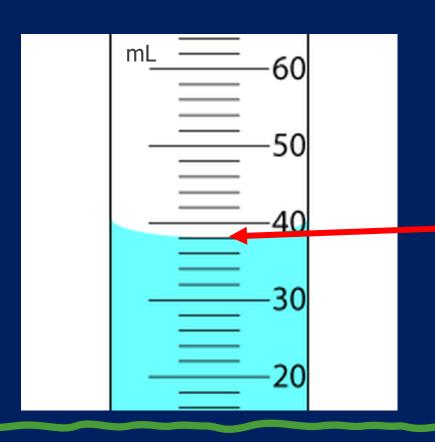
1,000,000 m<sup>3</sup>



# Liquid Volume

To measure liquid volume, you would use the unit measurement known as the Liter (L). The tool you would use is a cylinder.

Liquid volume is also referred to as capacity.


# Liquid Volume

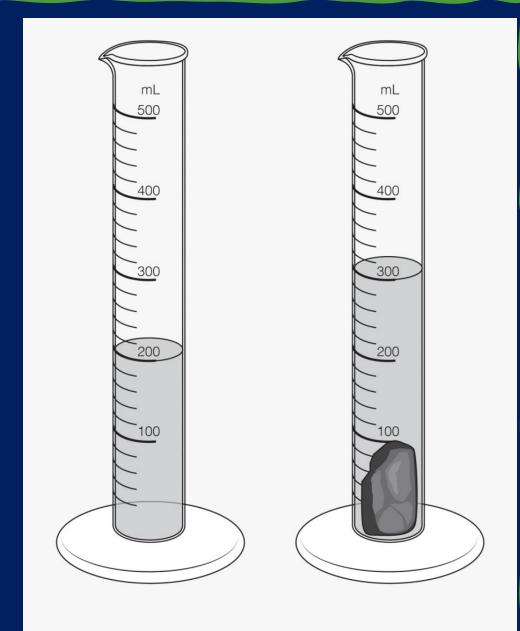
When to use each measurement?

- Liters (L)
  - Measuring amounts like in a jug of milk or large soda bottle
- Milliliter (mL)
  - Measuring smaller amounts
     like in a baby bottle

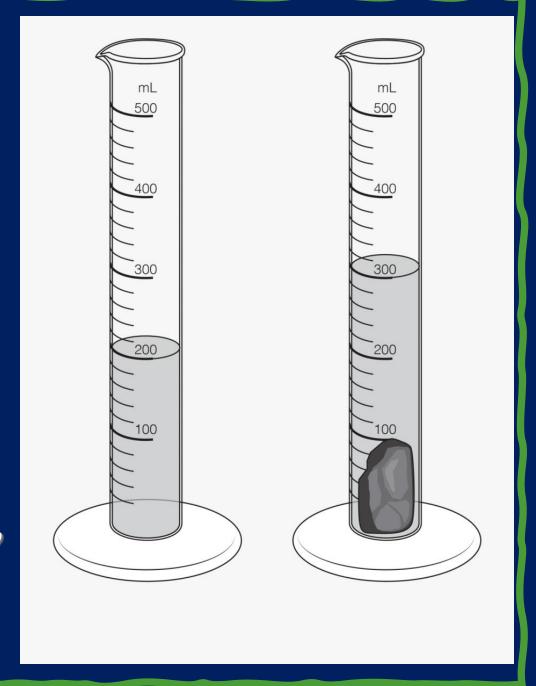


When measuring, you need to be aware of the meniscus. It is the curve in the water. You should measure at the bottom of the curve.




The liquid volume would be 38 mL.

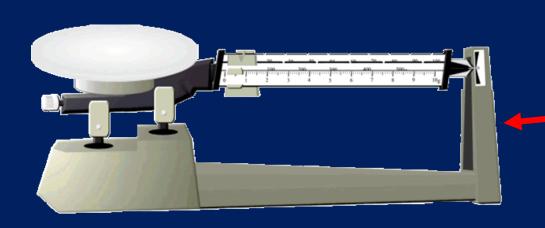
What about irregular objects?


Finding the volume of an irregular object like a rock can be tricky. You can't measure its sides, because they are not straight. So, what can you do?



To find the volume of an irregular object, fill a cylinder with water so that the object can be submerged when dropped in.




The cylinder measures 200 mL before the rock is added. After the rock has been dropped, the volume increases to 300 mL. The difference, 100 mL, is the volume of the rock.





#### Mass

Mass is the amount of matter in an object. The base unit for mass is kilogram (kg). The tool you would use is a scale or balance.



This
measuring
tool is
called a
triple beam
balance.

### Mass

When to use each measurement?

- Grams: g
  - Measuring small items
     like a candy bar



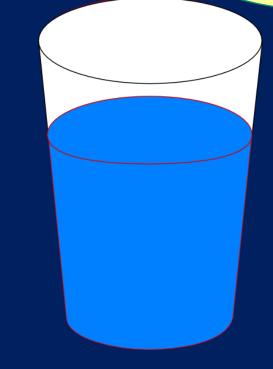
- Kilograms: kg
  - Measuring larger items like you



Over halfway done!

## Density

Density is the amount of mass in volume.


Use this formula to find an object's density:

**Density= Mass / Volume** 

D = M/V

What would the density of a cup of water be is if its volume was 15 mL and its mass was 15 g?

Do you know?



Do you know?


What would the density of a cup of water be is if its volume was 15 mL and its mass was 15 g?

1 g/mL



## Temperature

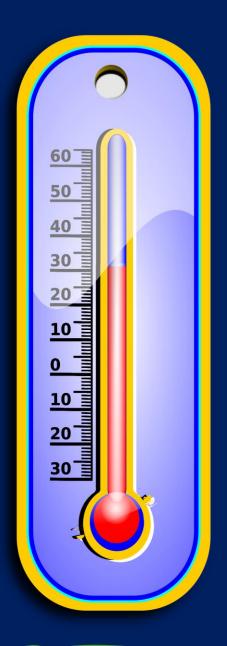
Temperature is the measurement of how hot or cold an object is. The base unit for temperature is Kelvin (K). Use a thermometer to find temperature.






# Temperature

When using a thermometer, the temperature is usually presented in Celsius or Fahrenheit. It is important to know how to convert Celsius to Kelvin.







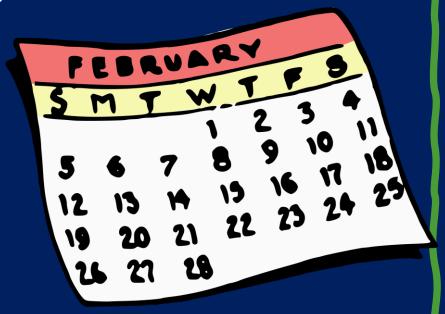

# Temperature

- To convert Celsius degrees to Kelvin, add 273.15 to the Celsius degrees.
- For example, if the temperature is 30 degrees
   Celsius, then add 273.15 to 30 and the answer is 303.15 K.



Last, but not least.

#### Time


Time is the ongoing sequence of events taking place. The base unit for time is seconds (s). A clock, timer, or stopwatch are all tools that can be used to measure time.



Last, but not least.

### Time

- Second (s)
  - measure of time used to refer to greater measures of time
- Minute = 60 seconds
- Hour = 60 minutes
- Day = 24 hours
- Week= 7 days
- 12 Months= Year



© Prentice-Hall

As you learn more about the SI Units, you will find this metric conversion sheet helpful. It is a useful reference when converting measurements.

#### SI UNITS AND CONVERSION TARIES

#### Common SI Units

| Measurement | Unit               | Symbol | Equivalents                        |
|-------------|--------------------|--------|------------------------------------|
| Length      | 1 millimeter       | mm     | 1000 micrometers (µm)              |
|             | 1 centimeter       | cm     | 10 millimeters (mm)                |
|             | 1 meter            | m      | 100 centimeters (cm)               |
|             | 1 kilometer        | km     | 1000 meters (m)                    |
| Area        | 1 square meter     | m²     | 10 000 square centimeters (cm²)    |
|             | 1 square kilometer | km²    | 1 000 000 square meters m²)        |
| Volume      | 1 milliter         | mL     | 1 cubic centimeter (cm² or cc)     |
|             | 1 liter            | L      | 1000 milliters (mL)                |
| Mass        | 1 gram             | g      | 1000 milligrams (mg)               |
|             | 1 kilogram         | kg     | 1000 grams (g)                     |
|             | 1 ton              | t      | 1000 kilograms (kg) = 1 metric ton |
| Time        | 1 second           | s      |                                    |
| Temperature | 1 Kelvin           | K      | 1 degree Celsius (°C)              |

#### Metric Conversion Tables

| When You Know | Multiply by | To Find            |             |               |
|---------------|-------------|--------------------|-------------|---------------|
|               |             | When You Know      | Multiply by | To Find       |
| inches        | 2.54        | centimeters        | 0.394       | inches        |
| feet          | 0.3048      | meters             | 3.281       | feet          |
| yards         | 0.914       | meters             | 1.0936      | yards         |
| miles         | 1.609       | kilometers         | 0.62        | miles         |
| square inches | 6.45        | square centimeters | 0.155       | square inches |
| square feet   | 0.093       | square meters      | 10.76       | square feet   |
| square yards  | 0.836       | square meters      | 1.196       | square yards  |
| acres         | 0.405       | hectares           | 2.471       | acres         |
| square miles  | 2.59        | square kilometers  | 0.386       | square miles  |
| cubic inches  | 16.387      | cubic centimeters  | 0.061       | cubic inches  |
| cubic feet    | 0.028       | cubic meters       | 35.315      | cubic feet    |
| cubic yards   | 0.765       | cubic meters       | 1.31        | cubic yards   |
| fluid ounces  | 29.57       | milliters          | 0.0338      | fluid ounces  |
| quarts        | 0.946       | Blers              | 1.057       | quarts        |
| gallons       | 3.785       | Blars              | 0.264       | gallons       |
| ounces        | 28.35       | grams              | 0.0353      | ounces        |
| pounds        | 0.4536      | kilograms          | 2.2046      | pounds        |
| tons          | 0.907       | metric tons        | 1.102       | tons          |

| When You Know |                                 |                    |  |  |
|---------------|---------------------------------|--------------------|--|--|
| Fahrenheit    | subtract 32; then divide by 1.8 | to find Celsius    |  |  |
| Celsius       | multiply by 1.8; then add 32    | to find Fahrenheit |  |  |

V Laboratory Ma

Science Explorer Focus on Earth Science

Click on the image to download & print.

Thanks to Clipart
Library for the
images!

For God hath not given us the spirit of fear; but of power, and of love, and of a sound mind. 2 Timothy 1:7



See our other Science resources at The Homeschool Daily!